# Computing Like the Brain: The path to machine intelligence

NASA September 17, 2013 Jeff Hawkins jhawkins@numenta.com



- 1) Discover operating principles of neocortex
- 2) Build systems based on these principles

# **Artificial Intelligence - no neuroscience**

Alan Turing



"Computers are universal machines" 1935+ "Human behavior as test for machine intelligence" 1950

#### **Major AI Initiatives**

- MIT AI Lab
- 5<sup>th</sup> Generation Computing Project
- DARPA Strategic Computing Initiative
- DARPA Grand Challenge

#### **AI Projects**

- ACT-R
- Asimo
- CoJACK
- Cyc
- Deep Blue
- Global Workspace Theory
- Mycin
- SHRDLU
- Soar
- Watson
- Many more -









- Pros: Good solutions
- Cons: Task specific
  - Limited or no learning

# **Artificial Neural Networks – minimal neuroscience**

Warren McCulloch Walter Pitts



"Neurons as logic gates" 1943 Proposed first artificial neural network





#### **ANN techniques**

- Back propagation
- Boltzman machines
- Hopfield networks
- Kohonen networks
- Parallel Distributed Processing
- Machine learning
- Deep Learning





- **Pros:** Good classifiers
  - Learning systems
- Cons: Limited capabilities
  - Not brain like

#### **Whole Brain Simulator – maximal neuroscience**

#### **The Human Brain Project**



### 1) Discover operating principles of neocortex

#### 2) Build systems based on these principles



#### The neocortex is a memory system.



#### The neocortex learns a sensory-motor model of the world

1) On-line learning from streaming data





- 1) On-line learning from streaming data
- 2) Hierarchy of memory regions







- 1) On-line learning from streaming data
- 2) Hierarchy of memory regions
- 3) Sequence memory
- 4) Sparse Distributed Representations
- 5) All regions are sensory and motor



- 1) On-line learning from streaming data
- 2) Hierarchy of memory regions
- 3) Sequence memory
- 4) Sparse Distributed Representations
- 5) All regions are sensory and motor
- 6) Attention



# These six principles are necessary and sufficient for biological and machine intelligence.

- All mammals from mouse to human have them
- We can build machines like this

#### **Dense Representations**

- Few bits (8 to 128)
- All combinations of 1's and 0's
- Example: 8 bit ASCII
  01101101 = m
- Individual bits have no inherent meaning
- Representation is assigned by programmer

# **Sparse Distributed Representations (SDRs)**

- Many bits (thousands)
- Few 1's mostly 0's
- Example: 2,000 bits, 2% active
- Each bit has semantic meaning
- Meaning of each bit is learned, not assigned





#### **SDR Properties**

1) **Similarity**:

shared bits = semantic similarity



#### Sequence Memory (for inference and motor)





How does a layer of neurons learn sequences?

#### Each cell is one bit in our Sparse Distributed Representation



SDRs are formed via a local competition between cells.

All processes are local across large sheets of cells.

# SDR (time =1)



# SDR (time =2)



#### Cells form connections to subsample of previously active cells. Predicts its own future activity.



#### Multiple Predictions Can Occur at Once



With one cell per column, 1<sup>st</sup> order memory We need a high order memory High order sequences are enabled with multiple cells per column.



#### **High Order Sequence Memory**



40 active columns, 10 cells per column

 $= 10^{40}$  ways to represent the same input in different contexts

A-B-C-D-E X-B'-C'-D'-Y

#### **High Order Sequence Memory**



Distributed sequence memory Works across large areas High order, high capacity Multiple simultaneous predictions Semantic generalization

#### **Online learning**

- Learn continuously, no batch processing
- If pattern repeats, reinforce, otherwise forget it



Learning is the growth of new synapses.



# **Cortical Region**



# **Cortical Region**





#### **Cortical Region**



Evidence suggests each layer is implementing a CLA variant

#### **Three Current Directions**

#### 1) Open Source Project

- NuPIC: CLA open source software and community
- Improve algorithms, develop applications

#### 2) Commercialization

- GROK: Predictive analytics using CLA
- Commercial value generates investment \$

#### 3) Custom CLA Hardware

- Needed for scaling research and commercial applications
- IBM, Seagate, Sandia Labs, DARPA

# NuPIC: CLA Open Source Project 🧥

#### www.Numenta.org

Single source tree (used by GROK)

# GPLv3 license

#### Active community

- 215 mail list subscribers
- 20 messages per day
- growing
- full time manager, Matt Taylor

#### Next hackathon November 2 & 3 in San Francisco

- NLP using SDRs
- Sensory-motor integration using CLA discussion





#### **GROK:** Predictive Analytics Using CLA



#### **GROK example: Factory Energy Usage**



#### **Customer need**



#### **GROK Predictions and Actuals**



#### **GROK example: Predicting Server Demand**



Server demand, Actual vs. Predicted

#### **GROK example: Detecting Anomalous Behavior**

Grok builds model of data, detects changes in predictability.



Gear bearing temperature & Grok Anomaly Score

**GROK** going to market for anomaly detection in I.T. 2014

#### **Custom CLA Hardware**

#### IBM

- Almaden Labs
- Joint research agreement
- Winfried Wilcke

#### DARPA

- "Cortical Processor"
- "HTM" (Hierarchical Temporal Memory)
- CLA is prototype primitive
- Dan Hammerstrom

#### Seagate Sandia Labs

# **Future of Machine Intelligence**











# **Future of Machine Intelligence**







#### **Definite**

- Faster, Bigger
- Super senses
- Fluid robotics
- Distributed hierarchy

#### <u>Maybe</u>

- Humanoid robots
- Computer/Brain interfaces for all

# <u>Not</u>

- Uploaded brains
- Evil robots
- Friendly uses only







# Why Machine Intelligence?





#### Live better

#### Learn more

# **Thank You**